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Multiple scaling in a one-dimensional sandpile
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We study the Abelian one-dimensional sandpile model in which the toppling at a site periodically depends
on the number of previous topplings at that site with the pefiohenT tends to infinity, the redistribution
of particles in unstable states becomes completely stochastic. ForTfjnite found the probability distribution
of avalanche sizes. We show that it is qualitatively similar to a multifractal scaling form obtained earlier for the
sandpile model with fixed toppling conditions on decorated one-dimensional diairs Ali and D. Dhar,
Phys. Rev. B52, 4804(1995]. [S1063-651X98)04507-3

PACS numbe(s): 64.60.Lx, 05.40+j, 64.60.Ht, 05.70.Ln

The study of dynamics on one-dimensiortaD) chains  n;+1n;+2,... nj+r(mod7) and the arrow is reset to;
has revealed a variety of qualitatively new and complex phe=tr(mod 7). Secondly, we can ascribe tmearest neighbors
nomena. This ranges from the early discussion of Andersomore thanr integers, sakr numbers 1,2 .. kr, by k num-
localization in random potentials to recent attempts to simpers to each, and arrange them in an arbitrary order. If the
plify 3D turbulence to a transport along a 1D chain. Lately,ratio T=k+/r is integer, we obtain a sandpile model with
there have been proposed examples of 1D systems that exppling rules that vary periodically with the periddat each
hibit self-organized criticality(SOQ [1], both with [2-5] ;e

o o Conservato (a6 In sl coses he 10, TS pseudorandom model ends 0 the andom 10 mode
dynamics, which in the case of most of the SOC models can r large T if integers 1,2... are uniformly distributed

. : X o among arrow directions at each site in the lifiit> . For
be well characterized by a single scaling relation in the formf'n'te T the model belonas 1o the class of Abelian sandpile
of a power law with a finite-size correction . N ' 9 ' b

However, critical behavior of 1D models typically involve models(ASM) and some of its properties can be determined

some randomness, either in terms of stochastic toppling rulggx@ctly. Among them, the most important is the fact that
as in the case of critical 1D sandpile models, or in the fornprobqb|lltles of all allowed copflguratlons of arrows and oc-
of intrinsic chaotic motion as in the 1D train version of the cupation numbers are equal in the steady dtbdé:
Burridge-Knopoff mode[9]. We start with a simplest nontrivial 1D case=2, r=2,

In this work, we study origins of criticality in the 1D T=3. Each site contains a counter of topplings that shows
sandpile models by considering a sequence of 1D reguldhe number of the last toppling taken by modulo 3. We as-
models where the random model, here denoted the Manrgtibe integers 1,2,5 to the left direction and 3,4,6 to the right
model, appears as a limit. The 1D version of the Mannalirection providing the movement of two particles left at
model[10,11,5 is equivalent to the rice pile modg3], and  each firsttmod3 toppling, right at each secor{chod3 top-
thus it belongs to the same universality cléd$ as other pling and in the opposite sides at each @ibd3 toppling at
stochastic SOC models with a conservation IEy12,9.  the given site. A configuratio® of the model is a set of
Each representative of the sequence of 1D regular modelson-negative occupation numbezsand the numbers of the

considered here is a pseudorandom model constructed bst topplingsu;=1,2,3 (mod3 assigned to each site of the
means of a spiral dynamics introduced[#8], and termed |attice: C={z ,4;},i=1,2,...L. The configurationC is

the dynamics of Eulerian walket&W). The motion of EW  giapie if all 7, are belowr =2. If C is unstable, so tha,
thems_elves is deterministic. With _each site of the lattice ONE. | for somei, the sitei topples by a rule depending
associates an arrow that can point along one O.f the bondg,n wmi and the current value gf; increases by 1u;— u;
connecting it with neighboring sites. The arrow directions at+ 1(mod3
a sitei are specified by integers (1<n;<7), wherer is To d i ibe the t » i lting f d .
the number of nearest neighbors of the site in a given lattice. 0 describe e fransiormation resulting from dropping a
At each time step, the walker arriving at a sitehanges the Particle on the site and allowing the system to evolve, we
arrow direction fromn; to n, +1(mod ) and moves one step d€fine the operatog; acting on the stable conflguratldh
from i along the new arrow direction. Thus, the motion of @d producing a new stable configuratiegC=C’. The op-
the walker is affected by medium, and in turn affects the€ratorsa; all commute as the operators of arrow rotations
medium inducing strong correlations between arrows. and topplings both commute in EW and ASM, respectively.
The EW model admits natural generalization along twoThe commutativity rule provides the construction of an Abe-
directions. First, we can introduce waiting time similar to lian group defined by Dhdr4] for the ASM.
that in the sandpile model: Each walker arriving at a site In particular, all recurrent configurations can be obtained
waits there until the number of particles waiting at that site isfrom a fixed one by successive acting by operatmriaken
=r. Then, these particles take one step in the directions n; times each
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FIG. 2. Probability of avalanche size counted as the number of
100 topplings in the recurrent state. The toppling rules used ha®
and the system size was=8192.
0 tonlike manner when localized instability propagates along
0 10 20 30 40 50 60 the lattice with a constant velocity. As a result, all sites in-

X volved into the relaxation topple exactly 3 times, except

. _ maybe a finite number of sites at the initial and final stages

recutront stae 15 oxciations at fou diferent paces. At the bottor¥" 1€ PFOCESS. In the second case, particles added in the bulk
; P ' - induce a diversity of avalanche shapes including large com-

we see the space-time plot of two boundary avalanches initiated at

: : : . act avalanches.
the right and left boundary. Higher in the plot we show linear andP . C .
respectively massive avalanches arising as a response in the bulk. .In Fig. 2 we show the dls.t.”buuon of avglanche SIZ(—:.‘S ob-
tained at steady state conditions. We notice two scaling re-

gimes, one regime witR(s) ~ 1/s° valid for avalanches with
C= H (a;)"C*. (1)  the number of topplings between size of an order of 10 and
iel the system sizd.. The second regime spreads from ava-
_ _ lanche sizes of the order &f¥? until L? where finite size
Thus, any recurrent configuration can be represented by &g¥fects become essential. For these large avalanches we ob-

L-dimensional vector{n;,n,,....n.}. Among different  serep(s)~1/sM2 Closer inspection of the avalanches of
vectors, however, there are equivalent ones. The identity ORne first regime reveals that these mostly look like the bound-
erator has the form ary avalanches where each site inside the avalanche topples 3
times.
E = H a3%ii () The analysis of the avalanche structure may be simplified
bojer by using “waves of toppling” introduced ifi16]. Due to the

Abelian property of the model, we can topple unstable sites
whereA; ; is the Laplacian matrix with elements; ;=2 if in an arbitrary order. We choose the following one: add a
i=j, Ajj=—1 if i and ] are connected by a bond and particle to the site having the height —1 and topple all
A;j ;=0 otherwise. Equatior(2) follows from observation unstable sites until they are stable except the source site
that two procedures produce the same efféb:laf’—adding which is allowed to topple not more than 3 times. This se-
6 particles at a given site and allowing them to evolve to agquence of topplings is called the first wave of topplings.
stable configuration(ii) a>_,a®, ,—adding 3 particles at the After the first wave has gone out, and the Sitis still un-
nearest neighbors of The identity operator allows one to Stable, we continue the avalanche, not permitting this site to
find the total number of nonequivalent vectors by identifica-topple more than 3 more times. The set of relaxed sites in the
tion of an elementary cell in thie-dimensional space. Then, period after the first wave is the second wave. This process
the number of all possible recurrent configurations is thecontinues until the whole lattice becomes stable.

volume of the elementary cell It is easy to deduce that any site covered by a wave
topples during the wave not more than 3 times. Indeed, to
N=3"detA=3"(L+1). (3)  topple a sitgf more than 3 times, one of the site$ 1 or

—1 should be toppled more than 3 times first. From this, one

The entropy per site is equal to In(3) in the latgémit in of the sitesj+2 or j—2 should be toppled more than 3
contrast with the simple 1D sandpile where entropy per sit¢imes. Continuing, we reach the initial pointof the wave,
is zero in the recurrent state. The nonzero value of entropwhich is toppled once. Therefore, none of the sites involved
opens for nontrivial dynamical behavior of the model. into the wave topples more than 3 times.

In Fig. 1 we show the response of the system to adding a The propagation of waves from the open boundaries is of
grain at different positions of the lattice. The response ispecial interest. Let us add 3 particles to the left boundary
widely different: in the case we add a particle to a boundarysitei=1 and to the right boundary site= L. Using the iden-
site, left or right, an excitation traverses the system in a solitity
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L point of the interval between the initial point and the BP and
afaf=a8( I1 Ei‘l)aer1 (4)  thus does not necessarily reach the BP. It is clear that the
=1 restriction on the number of topplings leads to a restriction
on the total mass of avalanches. These small avalanches are
we see that the operataﬁaﬁ ensures the transfer of 3 par- responsible for the initial part of the distributid(s) shown
ticles from the left edge to the siie=0 and from the right in Fig. 2. When the period — o the restriction is lifted the
edge to the site=L+1. The occupation numbers of all avalanches of clasdd form the single scaling relation of the
lattice sites =1,2,...L remain unchanged. The only possi- Manna model.
bility to realize this procedure is the uniform three-fold top- Consider the case when at least one site between the ini-
pling of all lattice sites. This gives a useful algorithm to tial point and the BP undergoes more than 3 topplings. Then,
verify if a given configurationC is the recurrent oneC is  the avalanches propagate up to the BP no matter how far it is
recurrent if all sites of the lattice topple exactly 3 times afterlocated. If, in the process, the avalanche does not spread
adding 3 particles to both the boundary sit€sis forbidden  significantly on the other side of the initiation point, it has a
in the recurrent set if a subset of the lattice topples less thalinear structure and belongs to the cldssof linear ava-
3 times. lanches. The avalanches of the classan be decomposed
We can also deduce that the waves are compact with reénto a finite humber of waves having the length of an order
spect to maximal topplings: if the sitésandj (i<j) topple  of j—i each. The first wave moves towards the BP at the site
3 times during the wave, the sites 1,i+2,...,j—1 topple | with a finite average velocity that depends on mean values
also 3 times. Otherwise, the given configuration contains &f the occupation numberg, and the fraction numbers of
forbidden subconfiguration. sites having given values qf;,=1,2,3. As the sites inside
If we add 3 particles only to the left boundary sitel of  the wave topple 3 times each, the initial configuration re-
the recurrent configuratio@, we generate the left boundary mains unchanged there. Therefore, next waves repeat the
wave propagating from the edge to a gitel<j<L, which  motion of the first wave everywhere except the initial and
topplesn<3 times. The wave initiated at the opposite edgefinal stages. The total number of topplings in the avalanche is
reaches this point and topples it-3 times providing the
uniform three-fold toppling of the whole lattice. We refer to s~3m;(i—i’), )
such a site as the break poif8P). By definition, the BP is ) , » )
unique. The examples of the waves propagating from the leff/nerei andi’ are the positions of the source point and BP
and right edges are shown in Fig. 1. Connecting all point9" the chain andn; is the number of periods at the site
corresponding to topplings whose time and space coordinatednce the avalanche spreads a finite distance to theniefs
differ by 1, we obtain a phase portrait of the left boundaryfinite ands~L. The value ofm; depends on the specific
wave. The left boundary wave together with the right one@rrangement of numbeis, w; in a cluster of sites in the
gives a graph representation of the recurrent configuraion vicinity of the source pomt._Due to translation invariance, the
Particular values of; and u; at any sitei can be recovered Positions of the source point and the BP are uniformly dis-
in a unique way from the local structure of the graph in thelributed on th_e Igttlce. This implies that the avalanches of the
vicinity of the pointi. The one-dimensional structure of the ¢lassL are distributed as
graph testifies to the exponential decay of correlations and 1
lack of the self-organized criticality in our model. P(s)~ _fl(f) (6)
The main objective of the wave analysis is to show that L
there exist three types of avalanches: sididssN), linear ] ] ] .
(L) and massivé M). We start with a simple but essential wheref; is a nonuniversal function that is constant for small
proposition. Given a recurrent configuratiéh consider an ~ arguments. o _ o
avalanche triggered at the sitd<i<L. Suppose the site The uniform distribution p_f wave sizes can be derlyed ina
topples at least 3 times during the avalanche. Then, the av&20re regular way. Each sieof the lattice involved in an
lanche reaches the BP. To prove this, consider the intervavalanche |n|t|at¢d at the SI.tEIS characterized by the total
(i,j) between the starting poiiitand the poin§ where the ~number of topplingsM;; during the avalanche and by the
BP is located. Assumi<j for definiteness. The left bound- number of periods of topplings;; whereT;;=0 is the maxi-
ary wave covers the intervail,{) by the definition of the BP. mal integer less thaM;;/3. It follows from dynamical rules
During the course of the left wave, the pointtopples 3 that the expected value df;=G;; is maximal at the site
times, transferring 3 particles inside the intervaljY in a  Where the avalanche has been initiated and monotonically
certain order depending on the valuewgfin C. Consider an  decreases with distance from this site. Indeed, the expected
avalanche initiated &t and exhibiting at least 3 topplings. number of particles leaving the sifeis 3A;;G;; whereas
The first 3 topplings of the avalanche lead to the transfer of 3-32y£;Gj Ay is the average flux intp. Equating both the
particles insidei(j) exactly in the same order as 3 topplings fluxes one gets
of the left boundary wave. Therefore, the avalanche propa-
gates up to the BP. Similarly, we can prove that if the top- _
: - . - > Gidy=6; . ()
pling process triggered at the siteauses three-fold toppling X oo
at a sitei’,i<i’<j, the avalanche reaches the BP as well.
The proven statement allows us to select the first type oThe Green functiorG;; =[A*1]ij in the 1D case is a linear
avalanche. We will say an avalanche belongs to the dlass decreasing function of the distanfie-j| if both i andj are
(the normal ongif it causes fewer than 3 topplings in any situated deeply inside the internjd,L]. Since a wave is the
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compact set of three-fold toppling§;; coincides with the returning back with a constant velocity scale % and
distribution function of waves whose linear extent exceedshould be referred to the third clakk (massive avalanchgs
li—j|. The linear dependence &;; on |i—j| leads to the The total number of topplings in these avalanches depends
uniform distribution of wave sizes. on the positions of the initiation point and the BP. Each of

The third class is formed by avalanches that spread a disthem occupies one of thie positions on the lattice; so the
tanceO(L) on both the sides of the source point. Again, weprobability of a given size is proportional ta_ 2. Thus, we
can decompose the avalanche into waves, but in this casean write the size distribution for avalanches of the cldss
the propagation of waves is qualitatively different for differ- in the form
ent directions. The motion of the first wave to the right is the
same as for the clads The front of the wave moves with a 1 s
fixed average velocity and stops at the BP. P(s)~ —2f2< —> : (10

The motion of the left front is less regular. The first left L L
wave moves up to a first obstacle when no more topplings
are possible. The second wave can overflow the stop poirft
or, vice versa, step back several sites. The left front of th
next waves behaves similarly, performing a random walk a
distances of the order &f®, 3<1. Eventually, it reaches the
source point afterm; steps(waves and the avalanche stops.
The probability distribution of the random walks returning to
the origin for the first time i$17]

heref, is a nonuniversal function.

Now, we may characterize the scaling behavior of ava-
anches with the multifractal formalisfii8]. For largeL, the
distribution of avalanches of sizes~L® scales asL (¥
where the multifractal exponeri{«) is given by[18]

f(a)= limIn[Proh (s=L%)]/In(L) (11

L—oo

1 05
P(m;)~ Ww (8
- r
which when combined with Ed5) gives the leading asymp- -
totics of the distributiorP(s) for this kind of avalanches g 15k
0
P&~ — © = [
S§)~———r. e -
L (s/L)%? g
2.5 +
It should be noted that one can represent the left front as a
simple random walk only approximately. Actually, the cor- 3

relations between different parts of the front exist. Moreover, 0
the correlation length grows with the periddand tends to
infinity for the Manna model due to its criticality. This ex-
plains why the law(9) becomes increasingly poor whdn
grows at a fixed..

At distances of an order df, the left front of the se-
guence of waves moves as a biased random walk. It drifts
from the source point toward the left boundary with a con-
stant average velocity. The important property of the con- &
stant front velocity can be derived from the uniform distri-
bution of wave sizes connected with linearity of the Green
function G;;. To see this, consider an intervall of the
lattice situated at the distan¢efrom the initiation pointi.

Let m waves propagating from stop in this interval. The (b)
average velocity of the avalanche front is proportional to the -3
density of stops im\l. But the uniform distribution of wave
sizes implies the uniform distribution of stops. Therefore, the
average velocity of the front does not depend on the distance
| from the source point.

(L

o

]/Iog
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FIG. 3. (a) Rescaled avalanche distributions for different top-

. . . ._pling periodsT=3,6,12. In all cases we considered system &ize
The behavior of the right front after reaching the BP iS_ 5448 we observe that the crossover between different regimes

different for two_ cases(i) cqnsequent waves Cross the BP moves slightly with the period approaching the single scaling form
and the front drifts to the right boundaryij) the front re- (15 () Avalanche distributions plotted as @), but here for 4
flects from the BP and moves back to the source point.  gifferent system sized, = 128,512,2048,8192 anfi=3. One ob-

When the front reaches the boundary, left or right, it re-serves the two scaling regimes, for linear and massive avalanches,
flects and moves in the opposite direction with a constanpius some regime for small avalanches. In all cases the contribution
average velocity. When two backward fronts or one backof small avalanches stops st L2399, the scaling of linear ava-
ward and one direct fronts meet, the avalanche stops. Thanches stops as~L, and the cutoff for the largest avalanches
avalanches spreading to both directions a distédde) and  scales ag~L21%0%,
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Ali and Dhar[15] have found the multifractality in 1D ASM result, the contribution from the cla$é grows and we can
on decorated chains formed by joining doublets or diamondsexpectf(«) approaches to a single function corresponding to
They have demonstrated that the distribution function is dhe scaling form

linear combination of two scaling forms

1 S
Proh (s)=L " 1f,(s/L)+L~2f,(s/L?), (12) PFOHS)~S—,fs( F)' (15

where f, and f, are nonuniversal scaling functions. They yhere r~1.1 is the critical exponent of the Manna model
found a subclass of avalanches whose distribution is singulafnd D~2.2 is the avalanche dimension. Thus, the normal
at smalls/L?. The diverging contribution comes from ava- avalanches dominate both the linear and massive avalanches.
lanches having a form of polygons with the linear size of an  More interesting, however, is the opposite order of limits.
order of the distanc® between the source point and BP. In This case is shown in Fig.(B). Fixing T, we consider lat-
this cases~R? and ProbR) ~ const. Therefore, the function tices of growing sizes. Then the horizontal segment rises
f,(s/L?) contains the square-root singularity tending to the value-1 and the right edge tends to the point
(—2,2) in the limitL—« in accordance with Eq14). Vary-

ing T, we find that the points{1,1) and (2,2) are the
fixed points of the period transformation. Wh&n-oo after
L—oo, the bounda,y determining the contribution of the
for s—0. In our model, this subclass of avalanches belongglassN avalanches goes right. The limiting valueaf is an

2

1/2
f2(s/L2)~(?

(13

to the clasaM. interesting open problem. lixg approaches the point
From Egs.(6), (9), (10), and(13), we have (—=1,1), the slope off(a) in the interval Gca<1 is 1,
_ which corresponds te=1 andD =2 in the Manna model.
-1 if qp<a<l However, if 7>1 for the limiting slope off (@) on the inter-
1 3 3 val 0< o< «ay, thena approaches the limity=1/7 and the
——za fl<asg horizontal segment of IR(s) has to survive even for large
f)=4y2 2 2. (14 lattices and large periods.
1 .3 In summary, we have studied deexcitation of a determin-
-1- 5 if Eg a<2 istic 1D sandpile model decorated with phase ordered top-

pling rules. The model exhibits widely different avalanche
The numerical value of the lower boungy~0.3 is condi- €sponses to perturbation: linear wavelike avalanches and

tioned by the scaling behavior of the large avalanches behassive polygonlike avalanches. Apart from these two re-
longing fo the clas®\ in the limit L—c. sponses there are avalanches of traditional SOC models. As

Our consideraion may be easiy generalzed 0 an ai YPITG PETS Bence; 1 sean o e S0C v
trary periodT. In spite of growing fluctuations, the main

i . avalanches. We find it interesting that phase ordering of de-
conclusion about the constant average velocity of wav

fronts remains true. The limiting form of the avalanche SizeSexcnatlon in 1D may give such a diversity of phenomena.

distribution P(s) depends on the order one takes the «©

thenT—oo. The first case is illustrated by Fig(eé8. We see This work was supported by the Russian Foundation for
that the horizontal segment reduces and sinks wihgnows  Fundamental Research through Grant No. 97-01-01030.
at a fixedL and the right edge elongates and sinks too. As &/.B.P. thanks NORDITA for its hospitality.
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