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Multiple scaling in a one-dimensional sandpile
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We study the Abelian one-dimensional sandpile model in which the toppling at a site periodically depends
on the number of previous topplings at that site with the periodT. WhenT tends to infinity, the redistribution
of particles in unstable states becomes completely stochastic. For finiteT, we found the probability distribution
of avalanche sizes. We show that it is qualitatively similar to a multifractal scaling form obtained earlier for the
sandpile model with fixed toppling conditions on decorated one-dimensional chains@A. A. Ali and D. Dhar,
Phys. Rev. E52, 4804~1995!#. @S1063-651X~98!04507-3#

PACS number~s!: 64.60.Lx, 05.40.1j, 64.60.Ht, 05.70.Ln
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The study of dynamics on one-dimensional~1D! chains
has revealed a variety of qualitatively new and complex p
nomena. This ranges from the early discussion of Ander
localization in random potentials to recent attempts to s
plify 3D turbulence to a transport along a 1D chain. Late
there have been proposed examples of 1D systems tha
hibit self-organized criticality~SOC! @1#, both with @2–5#
and without conservation laws@6–8,5#. In all cases, the 1D
systems have proven to be able to sustain an intermit
dynamics, which in the case of most of the SOC models
be well characterized by a single scaling relation in the fo
of a power law with a finite-size correction .

However, critical behavior of 1D models typically involv
some randomness, either in terms of stochastic toppling r
as in the case of critical 1D sandpile models, or in the fo
of intrinsic chaotic motion as in the 1D train version of th
Burridge-Knopoff model@9#.

In this work, we study origins of criticality in the 1D
sandpile models by considering a sequence of 1D reg
models where the random model, here denoted the Ma
model, appears as a limit. The 1D version of the Man
model @10,11,5# is equivalent to the rice pile model@3#, and
thus it belongs to the same universality class@4# as other
stochastic SOC models with a conservation law@2,12,9#.
Each representative of the sequence of 1D regular mo
considered here is a pseudorandom model constructe
means of a spiral dynamics introduced in@13#, and termed
the dynamics of Eulerian walkers~EW!. The motion of EW
themselves is deterministic. With each site of the lattice o
associates an arrow that can point along one of the bo
connecting it with neighboring sites. The arrow directions
a site i are specified by integersni (1<ni<t), wheret is
the number of nearest neighbors of the site in a given latt
At each time step, the walker arriving at a sitei changes the
arrow direction fromni to ni11(modt) and moves one ste
from i along the new arrow direction. Thus, the motion
the walker is affected by medium, and in turn affects t
medium inducing strong correlations between arrows.

The EW model admits natural generalization along t
directions. First, we can introduce waiting time similar
that in the sandpile model: Each walker arriving at a s
waits there until the number of particles waiting at that site
>r . Then, theser particles take one step in the directio
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ni11,ni12, . . . ,ni1r (mod t) and the arrow is reset tonj

1r (mod t). Secondly, we can ascribe tot nearest neighbors
more thant integers, saykt numbers 1,2, . . . ,kt, by k num-
bers to each, and arrange them in an arbitrary order. If
ratio T5kt/r is integer, we obtain a sandpile model wi
toppling rules that vary periodically with the periodT at each
site.

This pseudorandom model tends to the random 1D mo
for large T if integers 1,2, . . . are uniformly distributed
among arrow directions at each site in the limitT→`. For
finite T, the model belongs to the class of Abelian sandp
models~ASM! and some of its properties can be determin
exactly. Among them, the most important is the fact th
probabilities of all allowed configurations of arrows and o
cupation numbers are equal in the steady state@14#.

We start with a simplest nontrivial 1D caset52, r 52,
T53. Each site contains a counter of topplings that sho
the number of the last toppling taken by modulo 3. We
cribe integers 1,2,5 to the left direction and 3,4,6 to the ri
direction providing the movement of two particles left
each first~mod3! toppling, right at each second~mod3! top-
pling and in the opposite sides at each 3D~mod3! toppling at
the given site. A configurationC of the model is a set of
non-negative occupation numberszi and the numbers of the
last topplingsm i51,2,3 ~mod3! assigned to each site of th
lattice: C5$zi ,m i%,i 51,2, . . . ,L. The configurationC is
stable if all zi are belowr 52. If C is unstable, so thatzi

>r for some i , the site i topples by a rule dependin
on m i and the current value ofm i increases by 1:m i→m i

11~mod3!.
To describe the transformation resulting from dropping

particle on the sitei and allowing the system to evolve, w
define the operatorai acting on the stable configurationC
and producing a new stable configuration:aiC5C8. The op-
eratorsai all commute as the operators of arrow rotatio
and topplings both commute in EW and ASM, respective
The commutativity rule provides the construction of an Ab
lian group defined by Dhar@14# for the ASM.

In particular, all recurrent configurations can be obtain
from a fixed one by successive acting by operatorsai taken
ni times each
6959 © 1998 The American Physical Society
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C5)
i PL

~ai !
niC* . ~1!

Thus, any recurrent configuration can be represented b
L-dimensional vector$n1 ,n2 , . . . ,nL%. Among different
vectors, however, there are equivalent ones. The identity
erator has the form

Ei5)
j PL

aj
3D i j , ~2!

whereD i , j is the Laplacian matrix with elementsD i , j52 if
i 5 j , D i , j521 if i and j are connected by a bond an
D i , j50 otherwise. Equation~2! follows from observation
that two procedures produce the same effect:~i! ai

6—adding
6 particles at a given site and allowing them to evolve to
stable configuration;~ii ! ai 21

3 ai 11
3 —adding 3 particles at the

nearest neighbors ofi . The identity operator allows one t
find the total number of nonequivalent vectors by identific
tion of an elementary cell in theL-dimensional space. Then
the number of all possible recurrent configurations is
volume of the elementary cell

N53LdetD53L~L11!. ~3!

The entropy per site is equal to ln(3) in the largeL limit in
contrast with the simple 1D sandpile where entropy per
is zero in the recurrent state. The nonzero value of entr
opens for nontrivial dynamical behavior of the model.

In Fig. 1 we show the response of the system to addin
grain at different positions of the lattice. The response
widely different: in the case we add a particle to a bound
site, left or right, an excitation traverses the system in a s

FIG. 1. Response of a system of sizeL564 andT53 at the
recurrent state to excitations at four different places. At the bot
we see the space-time plot of two boundary avalanches initiate
the right and left boundary. Higher in the plot we show linear a
respectively massive avalanches arising as a response in the b
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tonlike manner when localized instability propagates alo
the lattice with a constant velocity. As a result, all sites
volved into the relaxation topple exactly 3 times, exce
maybe a finite number of sites at the initial and final stag
of the process. In the second case, particles added in the
induce a diversity of avalanche shapes including large co
pact avalanches.

In Fig. 2 we show the distribution of avalanche sizes o
tained at steady state conditions. We notice two scaling
gimes, one regime withP(s);1/s0 valid for avalanches with
the number of topplings between size of an order of 10 a
the system sizeL. The second regime spreads from av
lanche sizes of the order ofL3/2 until L2 where finite size
effects become essential. For these large avalanches we
serve P(s);1/s1/2. Closer inspection of the avalanches
the first regime reveals that these mostly look like the bou
ary avalanches where each site inside the avalanche topp
times.

The analysis of the avalanche structure may be simpli
by using ‘‘waves of toppling’’ introduced in@16#. Due to the
Abelian property of the model, we can topple unstable s
in an arbitrary order. We choose the following one: add
particle to the sitei having the heightr 21 and topple all
unstable sites until they are stable except the source sii ,
which is allowed to topple not more than 3 times. This s
quence of topplings is called the first wave of toppling
After the first wave has gone out, and the sitei is still un-
stable, we continue the avalanche, not permitting this site
topple more than 3 more times. The set of relaxed sites in
period after the first wave is the second wave. This proc
continues until the whole lattice becomes stable.

It is easy to deduce that any site covered by a wa
topples during the wave not more than 3 times. Indeed
topple a sitej more than 3 times, one of the sitesj 11 or j
21 should be toppled more than 3 times first. From this, o
of the sites j 12 or j 22 should be toppled more than
times. Continuing, we reach the initial pointi of the wave,
which is toppled once. Therefore, none of the sites involv
into the wave topples more than 3 times.

The propagation of waves from the open boundaries is
special interest. Let us add 3 particles to the left bound
site i 51 and to the right boundary sitei 5L. Using the iden-
tity

at

lk.

FIG. 2. Probability of avalanche size counted as the numbe
topplings in the recurrent state. The toppling rules used hadT53
and the system size wasL58192.
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a1
3aL

35a0
3S )

i 51

L

Ei
21D aL11

3 ~4!

we see that the operatora1
3aL

3 ensures the transfer of 3 pa
ticles from the left edge to the sitei 50 and from the right
edge to the sitei 5L11. The occupation numbers of a
lattice sitesi 51,2, . . . ,L remain unchanged. The only poss
bility to realize this procedure is the uniform three-fold to
pling of all lattice sites. This gives a useful algorithm
verify if a given configurationC is the recurrent one:C is
recurrent if all sites of the lattice topple exactly 3 times af
adding 3 particles to both the boundary sites;C is forbidden
in the recurrent set if a subset of the lattice topples less t
3 times.

We can also deduce that the waves are compact with
spect to maximal topplings: if the sitesi and j ( i , j ) topple
3 times during the wave, the sitesi 11,i 12, . . . ,j 21 topple
also 3 times. Otherwise, the given configuration contain
forbidden subconfiguration.

If we add 3 particles only to the left boundary sitei 51 of
the recurrent configurationC, we generate the left boundar
wave propagating from the edge to a sitej , 1< j <L, which
topplesn,3 times. The wave initiated at the opposite ed
reaches this point and topples it 32n times providing the
uniform three-fold toppling of the whole lattice. We refer
such a site as the break point~BP!. By definition, the BP is
unique. The examples of the waves propagating from the
and right edges are shown in Fig. 1. Connecting all po
corresponding to topplings whose time and space coordin
differ by 1, we obtain a phase portrait of the left bounda
wave. The left boundary wave together with the right o
gives a graph representation of the recurrent configurationC.
Particular values ofzi andm i at any sitei can be recovered
in a unique way from the local structure of the graph in t
vicinity of the point i . The one-dimensional structure of th
graph testifies to the exponential decay of correlations
lack of the self-organized criticality in our model.

The main objective of the wave analysis is to show t
there exist three types of avalanches: short~classN!, linear
~L! and massive~ M !. We start with a simple but essenti
proposition. Given a recurrent configurationC consider an
avalanche triggered at the sitei ,1< i<L. Suppose the sitei
topples at least 3 times during the avalanche. Then, the
lanche reaches the BP. To prove this, consider the inte
( i , j ) between the starting pointi and the pointj where the
BP is located. Assumei< j for definiteness. The left bound
ary wave covers the interval (i , j ) by the definition of the BP.
During the course of the left wave, the pointi topples 3
times, transferring 3 particles inside the interval (i , j ) in a
certain order depending on the value ofm i in C. Consider an
avalanche initiated ati and exhibiting at least 3 topplings
The first 3 topplings of the avalanche lead to the transfer o
particles inside (i , j ) exactly in the same order as 3 topplin
of the left boundary wave. Therefore, the avalanche pro
gates up to the BP. Similarly, we can prove that if the to
pling process triggered at the sitei causes three-fold toppling
at a sitei 8,i< i 8< j , the avalanche reaches the BP as we

The proven statement allows us to select the first type
avalanche. We will say an avalanche belongs to the clasN
~the normal one! if it causes fewer than 3 topplings in an
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point of the interval between the initial point and the BP a
thus does not necessarily reach the BP. It is clear that
restriction on the number of topplings leads to a restrict
on the total mass of avalanches. These small avalanche
responsible for the initial part of the distributionP(s) shown
in Fig. 2. When the periodT→` the restriction is lifted the
avalanches of classN form the single scaling relation of th
Manna model.

Consider the case when at least one site between the
tial point and the BP undergoes more than 3 topplings. Th
the avalanches propagate up to the BP no matter how far
located. If, in the process, the avalanche does not sp
significantly on the other side of the initiation point, it has
linear structure and belongs to the classL of linear ava-
lanches. The avalanches of the classL can be decompose
into a finite number of waves having the length of an ord
of j 2 i each. The first wave moves towards the BP at the
j with a finite average velocity that depends on mean val
of the occupation numberszk and the fraction numbers o
sites having given values ofmk51,2,3. As the sites inside
the wave topple 3 times each, the initial configuration
mains unchanged there. Therefore, next waves repeat
motion of the first wave everywhere except the initial a
final stages. The total number of topplings in the avalanch

s;3mi~ i 2 i 8!, ~5!

wherei and i 8 are the positions of the source point and B
on the chain andmi is the number of periods at the sitei .
Since the avalanche spreads a finite distance to the left,mi is
finite and s;L. The value ofmi depends on the specifi
arrangement of numberszi , m i in a cluster of sites in the
vicinity of the source point. Due to translation invariance, t
positions of the source point and the BP are uniformly d
tributed on the lattice. This implies that the avalanches of
classL are distributed as

P~s!;
1

L
f 1S s

L D , ~6!

wheref 1 is a nonuniversal function that is constant for sm
arguments.

The uniform distribution of wave sizes can be derived in
more regular way. Each sitej of the lattice involved in an
avalanche initiated at the sitei is characterized by the tota
number of topplingsMi j during the avalanche and by th
number of periods of topplingsTi j whereTi j >0 is the maxi-
mal integer less thanMi j /3. It follows from dynamical rules
that the expected value ofTi j̄ 5Gi j is maximal at the site
where the avalanche has been initiated and monotonic
decreases with distance from this site. Indeed, the expe
number of particles leaving the sitej is 3D j j Gi j whereas
23(k5” jGikDk j is the average flux intoj . Equating both the
fluxes one gets

(
k

GikDk j5d i j . ~7!

The Green functionGi j 5@D21# i j in the 1D case is a linea
decreasing function of the distanceu i 2 j u if both i and j are
situated deeply inside the interval@0,L#. Since a wave is the
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compact set of three-fold topplings,Gi j coincides with the
distribution function of waves whose linear extent excee
u i 2 j u. The linear dependence ofGi j on u i 2 j u leads to the
uniform distribution of wave sizes.

The third class is formed by avalanches that spread a
tanceO(L) on both the sides of the source point. Again, w
can decompose the avalanche into waves, but in this c
the propagation of waves is qualitatively different for diffe
ent directions. The motion of the first wave to the right is t
same as for the classL. The front of the wave moves with
fixed average velocity and stops at the BP.

The motion of the left front is less regular. The first le
wave moves up to a first obstacle when no more toppli
are possible. The second wave can overflow the stop p
or, vice versa, step back several sites. The left front of
next waves behaves similarly, performing a random walk
distances of the order ofLb,b,1. Eventually, it reaches th
source pointi aftermi steps~waves! and the avalanche stop
The probability distribution of the random walks returning
the origin for the first time is@17#

P~mi !;
1

mi
3/2

, ~8!

which when combined with Eq.~5! gives the leading asymp
totics of the distributionP(s) for this kind of avalanches

P~s!;
1

L

1

~s/L !3/2
. ~9!

It should be noted that one can represent the left front a
simple random walk only approximately. Actually, the co
relations between different parts of the front exist. Moreov
the correlation length grows with the periodT and tends to
infinity for the Manna model due to its criticality. This ex
plains why the law~9! becomes increasingly poor whenT
grows at a fixedL.

At distances of an order ofL, the left front of the se-
quence of waves moves as a biased random walk. It d
from the source point toward the left boundary with a co
stant average velocity. The important property of the c
stant front velocity can be derived from the uniform dist
bution of wave sizes connected with linearity of the Gre
function Gi j . To see this, consider an intervalD l of the
lattice situated at the distancel from the initiation pointi .
Let m waves propagating fromi stop in this interval. The
average velocity of the avalanche front is proportional to
density of stops inD l . But the uniform distribution of wave
sizes implies the uniform distribution of stops. Therefore,
average velocity of the front does not depend on the dista
l from the source point.

The behavior of the right front after reaching the BP
different for two cases:~i! consequent waves cross the B
and the front drifts to the right boundary;~ii ! the front re-
flects from the BP and moves back to the source point.

When the front reaches the boundary, left or right, it
flects and moves in the opposite direction with a const
average velocity. When two backward fronts or one ba
ward and one direct fronts meet, the avalanche stops.
avalanches spreading to both directions a distanceO(L) and
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returning back with a constant velocity scale asL2 and
should be referred to the third classM ~massive avalanches!.
The total number of topplings in these avalanches depe
on the positions of the initiation point and the BP. Each
them occupies one of theL positions on the lattice; so th
probability of a given sizes is proportional toL22. Thus, we
can write the size distribution for avalanches of the classM
in the form

P~s!;
1

L2
f 2S s

L2D , ~10!

where f 2 is a nonuniversal function.
Now, we may characterize the scaling behavior of a

lanches with the multifractal formalism@18#. For largeL, the
distribution of avalanches of sizess;La scales asL f (a)

where the multifractal exponentf (a) is given by@18#

f ~a!5 lim
L→`

ln@ProbL~s5La!#/ ln~L ! ~11!

FIG. 3. ~a! Rescaled avalanche distributions for different to
pling periodsT53,6,12. In all cases we considered system sizeL
52048. We observe that the crossover between different regi
moves slightly with the period approaching the single scaling fo
~15!. ~b! Avalanche distributions plotted as in~a!, but here for 4
different system sizes,L5128,512,2048,8192 andT53. One ob-
serves the two scaling regimes, for linear and massive avalanc
plus some regime for small avalanches. In all cases the contribu
of small avalanches stops ats;L0.360.05, the scaling of linear ava-
lanches stops ats;L, and the cutoff for the largest avalanche
scales ass;L2.1060.05.
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Ali and Dhar@15# have found the multifractality in 1D ASM
on decorated chains formed by joining doublets or diamon
They have demonstrated that the distribution function i
linear combination of two scaling forms

ProbL~s!5L21f 1~s/L !1L22f 2~s/L2!, ~12!

where f 1 and f 2 are nonuniversal scaling functions. The
found a subclass of avalanches whose distribution is sing
at smalls/L2. The diverging contribution comes from ava
lanches having a form of polygons with the linear size of
order of the distanceR between the source point and BP.
this cases;R2 and Prob(R);const. Therefore, the functio
f 2(s/L2) contains the square-root singularity

f 2~s/L2!;S L2

s D 1/2

~13!

for s→0. In our model, this subclass of avalanches belo
to the classM .

From Eqs.~6!, ~9!, ~10!, and~13!, we have

f ~x!55
21 if a0<a<1

1

2
2

3

2
a if 1<a<

3

2

212
1

2
a if

3

2
<a<2

. ~14!

The numerical value of the lower bounda0'0.3 is condi-
tioned by the scaling behavior of the large avalanches
longing to the classN in the limit L→`.

Our consideration may be easily generalized to an a
trary periodT. In spite of growing fluctuations, the mai
conclusion about the constant average velocity of w
fronts remains true. The limiting form of the avalanche siz
distribution P(s) depends on the order one takes theL→`
thenT→`. The first case is illustrated by Fig. 3~a!. We see
that the horizontal segment reduces and sinks whenT grows
at a fixedL and the right edge elongates and sinks too. A
.

s.
a

ar

n

s

e-

i-

e
s

a

result, the contribution from the classN grows and we can
expectf (a) approaches to a single function corresponding
the scaling form

Prob~s!;
1

st
f sS s

L2D , ~15!

where t'1.1 is the critical exponent of the Manna mod
and D'2.2 is the avalanche dimension. Thus, the norm
avalanches dominate both the linear and massive avalanc

More interesting, however, is the opposite order of limi
This case is shown in Fig. 3~b!. Fixing T, we consider lat-
tices of growing sizes. Then the horizontal segment ri
tending to the value21 and the right edge tends to the poi
(22,2) in the limitL→` in accordance with Eq.~14!. Vary-
ing T, we find that the points (21,1) and (22,2) are the
fixed points of the period transformation. WhenT→` after
L→`, the bounda0 determining the contribution of the
classN avalanches goes right. The limiting value ofa0 is an
interesting open problem. Ifa0 approaches the point
(21,1), the slope off (a) in the interval 0<a<1 is 1,
which corresponds tot51 andD52 in the Manna model.
However, ift.1 for the limiting slope off (a) on the inter-
val 0<a<a0, thena0 approaches the limita051/t and the
horizontal segment of lnP(s) has to survive even for large
lattices and large periods.

In summary, we have studied deexcitation of a determ
istic 1D sandpile model decorated with phase ordered t
pling rules. The model exhibits widely different avalanc
responses to perturbation: linear wavelike avalanches
massive polygonlike avalanches. Apart from these two
sponses there are avalanches of traditional SOC models
the toppling period extends, the scaling of the SOC a
lanches extends to dominate both the linear and the mas
avalanches. We find it interesting that phase ordering of
excitation in 1D may give such a diversity of phenomena

This work was supported by the Russian Foundation
Fundamental Research through Grant No. 97-01-010
V.B.P. thanks NORDITA for its hospitality.
y,

J.

-

. A
@1# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381
~1987!.

@2# S. I. Zaitsev, Physica A189, 411 ~1992!.
@3# V. Frette, K. Christensen, A. Malte-So”rensen, J. Feder, T

Jo”ssang, and P. Meakin, Nature~London! 379, 49 ~1996!.
@4# M. Paczuski and S. Boettcher, Phys. Rev. Lett.77, 111~1996!.
@5# H. Nakanishi and K. Sneppen, Phys. Rev. E55, 4012~1997!.
@6# K. Sneppen, Phys. Rev. Lett.69, 3539~1992!.
@7# P. Bak and K. Sneppen, Phys. Rev. Lett.71, 4083~1993!.
@8# M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E53, 414

~1996!.
@9# M. de Sousa Vieira, Phys. Rev. A46, 6288~1992!.

@10# S. S. Manna, J. Phys. A24, L363 ~1991!.
@11# A. Ben-Hur and O. Biham, Phys. Rev. E53, R1317~1996!.
@12# Y.-C. Zhang, Phys. Rev. Lett.63, 470 ~1989!.
@13# V. B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurth

Phys. Rev. Lett.77, 5079~1996!.
@14# D. Dhar, Phys. Rev. Lett.64, 1613~1990!.
@15# A. A. Ali and D. Dhar, Phys. Rev. E52, 4804~1995!.
@16# E. V. Ivashkevich, D. V. Ktitarev, and V. B. Priezzhev,

Phys. A27, L585 ~1994!.
@17# W. Feller, An Introduction to Probability Theory and Its Ap

plications,Vol. 1 ~John Wiley, New York, 1950!.
@18# L. P. Kadanoff, S. R. Nagel, L. Wu, and S. Zhou, Phys. Rev

399, 6524~1989!.


